Unsupervised topic discovery by anomaly detection

نویسندگان

  • Cheng
  • Leon
  • Leon Cheng
  • Craig Martell
  • Pranav Anand
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts

In this paper, we present a novel approach for video-anomaly detection in crowded and complicated scenes. The proposed approach detects anomalies based on a hierarchical activity-pattern discovery framework, comprehensively considering both global and local spatio-temporal contexts. The discovery is a coarse-to-fine learning process with unsupervised methods for automatically constructing norma...

متن کامل

A Survey of Outlier Detection Methods in Network Anomaly Identification

The detection of outliers has gained considerable interest in data mining with the realization that outliers can be the key discovery to be made from very large databases. Outliers arise due to various reasons such as mechanical faults, changes in system behavior, fraudulent behavior, human error and instrument error. Indeed, for many applications the discovery of outliers leads to more interes...

متن کامل

Sub-Space Clustering and Evidence Accumulation for Unsupervised Network Anomaly Detection

Network anomaly detection has been a hot research topic for many years. Most detection systems proposed so far employ a supervised strategy to accomplish the task, using either signature-based detection methods or supervised-learning techniques. However, both approaches present major limitations: the former fails to detect unknown anomalies, the latter requires training and labeled traffic, whi...

متن کامل

Arrays of (locality-sensitive) Count Estimators (ACE): High-Speed Anomaly Detection via Cache Lookups

Anomaly detection is one of the frequent and important subroutines deployed in large-scale data processing systems. Even being a well-studied topic, existing techniques for unsupervised anomaly detection require storing significant amounts of data, which is prohibitive from memory and latency perspective. In the big-data world existing methods fail to address the new set of memory and latency c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012